Estimating global ocean heat content from tidal magnetic satellite observations
نویسندگان
چکیده
منابع مشابه
Ocean tidal signals in observatory and satellite magnetic measurements
[1] Ocean flow moves sea water through the Earth’s magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for ...
متن کاملObserving ocean heat content using satellite gravity and altimetry
[1] A method for combining satellite altimetry observations with satellite measurements of the Earth’s time-varying gravity to give improved estimates of the ocean’s heat storage is presented. Over the ocean the time-variable component of the geoid can be related to the time-varying bottom pressure. The methodology of estimating the ocean’s time-varying heat storage using altimetric observation...
متن کاملDistinctive climate signals in reanalysis of global ocean heat content
[1] The elusive nature of the post-2004 upper ocean warming has exposed uncertainties in the ocean’s role in the Earth’s energy budget and transient climate sensitivity. Here we present the time evolution of the global ocean heat content for 1958 through 2009 from a new observationbased reanalysis of the ocean. Volcanic eruptions and El Niño events are identified as sharp cooling events punctua...
متن کاملGlobal upper ocean heat content and climate variability
Observational data from the Global Temperature and Salinity Profile Program were used to calculate the upper ocean heat content (OHC) anomaly. The thickness of the upper layer is taken as 300 m for the Pacific/Atlantic Ocean and 150 m for the Indian Ocean since the Indian Ocean has shallower thermoclines. First, the optimal spectral decomposition scheme was used to build up monthly synoptic tem...
متن کاملBayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations
Accurate estimation of the satellite-based global terrestrial latent heat flux (LE) at high spatial and temporal scales remains a major challenge. In this study, we introduce a Bayesian model averaging (BMA) method to improve satellite-based global terrestrial LE estimation by merging five process-based algorithms. These are the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2019
ISSN: 2045-2322
DOI: 10.1038/s41598-019-44397-8